54 research outputs found

    Montane meadow change during drought varies with background hydrologic regime and plant functional group

    Get PDF
    Climate change models for many ecosystems predict more extreme climatic events in the future, including exacerbated drought conditions. Here we assess the effects of drought by quantifying temporal variation in community composition of a complex montane meadow landscape characterized by a hydrological gradient. The meadows occur in two regions of the Greater Yellowstone Ecosystem (Gallatin and Teton) and were classified into six categories (M1ā€“M6, designating hydric to xeric) based upon Satellite pour lā€™Observation de la Terre (SPOT) satellite imagery. Both regions have similar plant communities, but patch sizes of meadows are much smaller in the Gallatin region. We measured changes in the percent cover of bare ground and plants by species and functional groups during five years between 1997 and 2007. We hypothesized that drought effects would not be manifested evenly across the hydrological gradient, but rather would be observed as hotspots of change in some areas and minimally evident in others. We also expected varying responses by plant functional groups (forbs vs. woody plants). Forbs, which typically use water from relatively shallow soils compared to woody plants, were expected to decrease in cover in mesic meadows, but increase in hydric meadows. Woody plants, such as Artemisia, were expected to increase, especially in mesic meadows. We identified several important trends in our meadow plant communities during this period of drought: (1) bare ground increased significantly in xeric meadows of both regions (Gallatin M6 and Teton M5) and in mesic (M3) meadows of the Teton, (2) forbs decreased significantly in the mesic and xeric meadows in both regions, (3) forbs increased in hydric (M1) meadows of the Gallatin region, and (4) woody species showed increases in M2 and M5 meadows of the Teton region and in M3 meadows of the Gallatin region. The woody response was dominated by changes in Artemisia spp. and Chrysothamnus viscidiflorus. Thus, our results supported our expectations that community change was not uniform across the landscape, but instead could be predicted based upon functional group responses to the spatial and temporal patterns of water availability, which are largely a function of plant water use and the hydrological gradient.This material is based upon research supported by the National Science Foundation under Grants 0518150 and EPS0814387, the Environmental Protection Agency under STAR Grant R825155, the University of Wyoming National Park Service Research Station, and the Grand Teton Natural History Association. We thank the University of Wyoming National Park Service Research Station (particularly Henry Harlow and Sue Consolo-Murphy) and the U.S. Forest Service for providing support and housing. Philip Dixon provided statistical consulting, and Mark Jakubauskas collaborated in setting up our initial field campaigns. Edward Cook assisted in selection and assessment of PDSI data; and Lisa Graumlich, Andy Bunn, Steve Gray, and Jeremy Littel advised us on climate reconstruction options for the GYE. Scott Creel, Sue Fairbanks, and Matt Kaufmann provided information on elk population trends in the region. Jill Sherwood designed the map. William Clark and two anonomous reviewers provided important suggestions that helped improve the manuscript. Finally, we thank the many research technicians and field assistants who helped in the fieldwork

    Montane Meadow Change during Drought Varies with Background Hydrologic Regime and Plant Functional Group

    Get PDF
    Climate change models for many ecosystems predict more extreme climatic events in the future, including exacerbated drought conditions. Here we assess the effects of drought by quantifying temporal variation in community composition of a complex montane meadow landscape characterized by a hydrological gradient. The meadows occur in two regions of the Greater Yellowstone Ecosystem (Gallatin and Teton) and were classified into six categories (M1ā€“M6, designating hydric to xeric) based upon Satellite pour lā€™Observation de la Terre (SPOT) satellite imagery. Both regions have similar plant communities, but patch sizes of meadows are much smaller in the Gallatin region. We measured changes in the percent cover of bare ground and plants by species and functional groups during five years between 1997 and 2007. We hypothesized that drought effects would not be manifested evenly across the hydrological gradient, but rather would be observed as hotspots of change in some areas and minimally evident in others. We also expected varying responses by plant functional groups (forbs vs. woody plants). Forbs, which typically use water from relatively shallow soils compared to woody plants, were expected to decrease in cover in mesic meadows, but increase in hydric meadows. Woody plants, such as Artemisia, were expected to increase, especially in mesic meadows. We identified several important trends in our meadow plant communities during this period of drought: (1) bare ground increased significantly in xeric meadows of both regions (Gallatin M6 and Teton M5) and in mesic (M3) meadows of the Teton, (2) forbs decreased significantly in the mesic and xeric meadows in both regions, (3) forbs increased in hydric (M1) meadows of the Gallatin region, and (4) woody species showed increases in M2 and M5 meadows of the Teton region and in M3 meadows of the Gallatin region. The woody response was dominated by changes in Artemisia spp. and Chrysothamnus viscidiflorus. Thus, our results supported our expectations that community change was not uniform across the landscape, but instead could be predicted based upon functional group responses to the spatial and temporal patterns of water availability, which are largely a function of plant water use and the hydrological gradient

    Ethnic differences in medicinal plant use among University students: a cross-sectional survey of self-reported medicinal plant use at two Midwest Universities

    Get PDF
    Background: Numerous surveys of medicinal plant use among college students abound, but none compare use between students enrolled in two different Universities with significantly different ethnic compositions. The objective of this study is to compare medicinal plant use between two different ethnic college populations and explore differences between student medicinal plant users and non-users for comparison with previous research. Methods: Students (n = 721) at a large research university (n = 498) and a Pan-Tribal University for Native Americans (n = 233) completed surveys in October 2011 to assess past year medicinal plant use. The Mann-Whitney U test, Chi Square test, and General Linear Model were used to compare demographics and self-reported use of medicinal plants among students at both Universities and between past year users and non-users. Results: Over 23 % of university students surveyed reported past year medicinal plant use. Users were more likely to use commercial tobacco products and to report poorer health than non-users. While Native American student medicinal plant users reported significantly higher rates of commercial tobacco use, lower self-assessment of health, and less use of prescription medicine than non-Native users, no significant differences in prevalence of medicinal plant use were found between University student populations. Conclusions: Results are consistent with preexisting data showing higher rates of medicinal plant use among college students compared to the larger US population of adults and demonstrate previously documented health disparities in Native American populations compared to non-Native Americans

    Antiproliferative Withanolides from Datura wrightii

    Get PDF
    A new withanolide, named withawrightolide (1), and four known withanolides (2āˆ’5) were isolated from the aerial parts of Datura wrightii. The structure of compound 1 was elucidated through 2D NMR and other spectroscopic techniques. In addition, the structure of withametelin L (2) was confirmed by X-ray crystallographic analysis. Using MTS viability assays, withanolides 1āˆ’5 showed antiproliferative activities against human glioblastoma (U251 and U87), head and neck squamous cell carcinoma (MDA-1986), and normal fetal lung fibroblast (MRC-5) cells with IC50 values in the range between 0.56 and 5.6 Ī¼M

    Cytotoxic Withanolide Constituents of Physalis longifolia

    Get PDF
    Fourteen new withanolides, 1ā€“14, named withalongolides Aā€“N, respectively, were isolated from the aerial parts of Physalis longifolia together with eight known compounds (15ā€“22). The structures of compounds 1ā€“14 were elucidated through spectroscopic techniques and chemical methods. In addition, the structures of withanolides 1, 2, 3, and 6 were confirmed by X-ray crystallographic analysis. Using a MTS viability assay, eight withanolides (1, 2, 3, 7, 8, 15, 16, and 19) and four acetylated derivatives (1a, 1b, 2a, and 2b) showed potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal fibroblast (MRC-5) cells with IC50 values in the range between 0.067 and 9.3 Ī¼M

    Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie

    Get PDF
    Citation: Baer, S. G., Blair, J. M., & Collins, S. L. (2016). Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie. Ecological Monographs, 86(1), 94-106. doi:10.1890/15-0888.1Understanding what constrains the persistence of species in communities is at the heart of community assembly theory and its application to conserving and enhancing biodiversity. The "environmental heterogeneity hypothesis" predicts greater species coexistence in habitats with greater resource variability. In the context of community assembly, environmental heterogeneity may influence the variety and strength of abiotic conditions and competitive interactions (environmental filters) to affect the relative abundance of species and biodiversity. We manipulated key resources that influence plant diversity in tallgrass prairie (i.e., soil depth and nitrogen availability) to increase environmental heterogeneity prior to sowing native prairie species into a former agricultural field. We compared variability in nutrient availability, aboveground annual net primary productivity (ANPP), and the composition of species between replicate plots containing soil heterogeneity manipulations and plots with no resource manipulations (n = 4 per treatment) during the first 15 yr of community assembly as a test of the "environmental heterogeneity hypothesis." The manipulations increased environmental heterogeneity, measured as the coefficient of variation in NO3-N availability and ANPP. Plant diversity, however, was similar and decayed exponentially and indiscriminately over time between the heterogeneity treatments. Species richness declined linearly over time in both heterogeneity treatments, but richness was higher in the more heterogeneous soil 2 yr following a second propagule addition 8 yr after the initial sowing. As a result, there was a lower rate of species loss over time in the more heterogeneous soil (0.60 species yr(-1)) relative to the control soil (0.96 species yr(-1)). Communities in each treatment exhibited strong convergence over time resulting from a shift in dominant species across all treatments and a gradual increase in the clonal C-4 grass, Andropogon gerardii. We attribute the weak effect of heterogeneity on diversity to increasing dominance of a clonal species, which decreased the scale of soil treatments relative to plant size, dispersal limitation, and absence of a key driver (grazing) known to increase plant diversity under a frequent fire regime. Thus, steering community assembly to attain high biodiversity may depend more on manipulating processes that reduce dominance and facilitate the arrival of new species than promoting environmental heterogeneity
    • ā€¦
    corecore